AJNR News Digest


Go to AJNR News

17 September 2020, 7:56 pm
Siddiqui, J., Bala, F., Sciacca, S., Falzon, A. M., Benger, M., Matloob, S. A., Miller, F. N. A. C., Simister, R. J., Chatterjee, I., Sztriha, L. K., Davagnanam, I., Booth, T. C.
BACKGROUND AND PURPOSE:

Diagnosis of coronavirus disease 2019 (COVID-19) relies on clinical features and reverse-transcriptase polymerase chain reaction testing, but the sensitivity is limited. Carotid CTA is a routine acute stroke investigation and includes the lung apices. We evaluated CTA as a potential COVID-19 diagnostic imaging biomarker.

MATERIALS AND METHODS:

This was a multicenter, retrospective study (n = 225) including CTAs of patients with suspected acute stroke from 3 hyperacute stroke units (March-April 2020). We evaluated the reliability and accuracy of candidate diagnostic imaging biomarkers. Demographics, clinical features, and risk factors for COVID-19 and stroke were analyzed using univariate and multivariate statistics.

RESULTS:

Apical ground-glass opacification was present in 22.2% (50/225) of patients. Ground-glass opacification had high interrater reliability (Fleiss = 0.81; 95% CI, 0.68–0.95) and, compared with reverse-transcriptase polymerase chain reaction, had good diagnostic performance (sensitivity, 75% [95% CI, 56–87]; specificity, 81% [95% CI, 71–88]; OR = 11.65 [95% CI, 4.14–32.78]; P < .001) on multivariate analysis. In contrast, all other contemporaneous demographic, clinical, and imaging features available at CTA were not diagnostic for COVID-19. The presence of apical ground-glass opacification was an independent predictor of increased 30-day mortality (18.0% versus 5.7%, P = .017; hazard ratio = 3.51; 95% CI, 1.42–8.66; P = .006).

CONCLUSIONS:

We identified a simple, reliable, and accurate COVID-19 diagnostic and prognostic imaging biomarker obtained from CTA lung apices: the presence or absence of ground-glass opacification. Our findings have important implications in the management of patients presenting with suspected stroke through early identification of COVID-19 and the subsequent limitation of disease transmission.


17 September 2020, 4:17 pm
Pons-Escoda, A., Garcia-Ruiz, A., Naval-Baudin, P., Cos, M., Vidal, N., Plans, G., Bruna, J., Perez-Lopez, R., Majos, C.
BACKGROUND AND PURPOSE:

DSC-PWI has demonstrated promising results in the presurgical diagnosis of brain tumors. While most studies analyze specific parameters derived from time-intensity curves, very few have directly analyzed the whole curves. The aims of this study were the following: 1) to design a new method of postprocessing time-intensity curves, which renders normalized curves, and 2) to test its feasibility and performance on the diagnosis of primary central nervous system lymphoma.

MATERIALS AND METHODS:

Diagnostic MR imaging of patients with histologically confirmed primary central nervous system lymphoma were retrospectively reviewed. Correlative cases of glioblastoma, anaplastic astrocytoma, metastasis, and meningioma, matched by date and number, were retrieved for comparison. Time-intensity curves of enhancing tumor and normal-appearing white matter were obtained for each case. Enhancing tumor curves were normalized relative to normal-appearing white matter. We performed pair-wise comparisons for primary central nervous system lymphoma against the other tumor type. The best discriminatory time points of the curves were obtained through a stepwise selection. Logistic binary regression was applied to obtain prediction models. The generated algorithms were applied in a test subset.

RESULTS:

A total of 233 patients were included in the study: 47 primary central nervous system lymphomas, 48 glioblastomas, 39 anaplastic astrocytomas, 49 metastases, and 50 meningiomas. The classifiers satisfactorily performed all bilateral comparisons in the test subset (primary central nervous system lymphoma versus glioblastoma, area under the curve = 0.96 and accuracy = 93%; versus anaplastic astrocytoma, 0.83 and 71%; versus metastases, 0.95 and 93%; versus meningioma, 0.93 and 96%).

CONCLUSIONS:

The proposed method for DSC-PWI time-intensity curve normalization renders comparable curves beyond technical and patient variability. Normalized time-intensity curves performed satisfactorily for the presurgical identification of primary central nervous system lymphoma.


17 September 2020, 3:02 pm
Ospel, J. M., Brouwer, P., Dorn, F., Arthur, A., Jensen, M. E., Nogueira, R., Chapot, R., Albuquerque, F., Majoie, C., Jayaraman, M., Taylor, A., Liu, J., Fiehler, J., Sakai, N., Orlov, K., Kallmes, D., Fraser, J. F., Thibault, L., Goyal, M.
BACKGROUND AND PURPOSE:

There is a paucity of data regarding antiplatelet management strategies in the setting of stent-assisted coiling/flow diversion for ruptured intracranial aneurysms. This study aimed to identify current challenges in antiplatelet management during stent-assisted coiling/flow diversion for ruptured intracranial aneurysms and to outline possible antiplatelet management strategies.

MATERIALS AND METHODS:

The modified DELPHI approach with an on-line questionnaire was sent in several iterations to an international, multidisciplinary panel of 15 neurointerventionalists. The first round consisted of open-ended questions, followed by closed-ended questions in the subsequent rounds. Responses were analyzed in an anonymous fashion and summarized in the final manuscript draft. The statement received endorsement from the World Federation of Interventional and Therapeutic Neuroradiology, the Japanese Society for Neuroendovascular Therapy, and the Chinese Neurosurgical Society.

RESULTS:

Data were collected from December 9, 2019, to March 13, 2020. Panel members achieved consensus that platelet function testing may not be necessary and that antiplatelet management for stent-assisted coiling and flow diversion of ruptured intracranial aneurysms can follow the same principles. Preprocedural placement of a ventricular drain was thought to be beneficial in cases with a high risk of hydrocephalus. A periprocedural dual, intravenous, antiplatelet regimen with aspirin and a glycoprotein IIb/IIIa inhibitor was preferred as a standard approach. The panel agreed that intravenous medication can be converted to oral aspirin and an oral P2Y12 inhibitor within 24 hours after the procedure.

CONCLUSIONS:

More and better data on antiplatelet management of patients with ruptured intracranial aneurysms undergoing stent-assisted coiling or flow diversion are urgently needed. Panel members in this DELPHI consensus study preferred a periprocedural dual-antiplatelet regimen with aspirin and a glycoprotein IIb/IIIa inhibitor.


17 September 2020, 3:01 pm
Hillen, T. J., Baker, J. C., Long, J. R., Friedman, M. V., Jennings, J. W.
BACKGROUND AND PURPOSE:

CT-guided head and neck biopsies can be challenging due to the anatomy and adjacent critical structures but can often obviate the need for open biopsy. A few studies and review articles have described approaches to biopsy in the head and neck. This retrospective study evaluated technical considerations, histopathologic yield, and safety in CT-guided head and neck core needle biopsies.

MATERIALS AND METHODS:

A retrospective review of head and neck biopsies performed from January 2013 through December 2019 was conducted. Clinical diagnosis and indication, patient demographics, mass location and size, biopsy needle type, technical approach, dose-length product, sedation details, complications, diagnostic histopathologic yield, and the use of iodinated contrast were recorded for each case.

RESULTS:

A total of 27 CT-guided head and neck core needle biopsies were performed in 26 patients. The diagnostic sample rate was 100% (27/27). A concordant histopathologic diagnosis was obtained in 93% (25/27) of cases. There was a single complication of core needle biopsy, a small asymptomatic superficial hematoma.

CONCLUSIONS:

Percutaneous CT-guided biopsy of deep masses in the head and neck is safe and effective with careful biopsy planning and has a high diagnostic yield that can obviate the need for open biopsy.


17 September 2020, 2:42 pm
Sequeiros, J. M., Roa, J. A., Sabotin, R. P., Dandapat, S., Ortega-Gutierrez, S., Leira, E. C., Derdeyn, C. P., Bathla, G., Hasan, D. M., Samaniego, E. A.
BACKGROUND AND PURPOSE:

There is mounting evidence supporting the benefit of intra-arterial administration of vasodilators in diagnosing reversible cerebral vasoconstriction syndrome. We prospectively quantified the degree of luminal diameter dilation after intra-arterial administration of verapamil and its accuracy in diagnosing reversible cerebral vasoconstriction syndrome.

MATERIALS AND METHODS:

Patients suspected of having intracranial arteriopathy on noninvasive imaging and referred for digital subtraction angiography were enrolled in a prospective registry. Intra-arterial verapamil was administered in vascular territories with segmental irregularities. The caliber difference (Caliberpost – Caliberpre) and the proportion of caliber change ([(Caliberpost – Caliberpre)/Caliberpre] x 100%) were used to determine the response to verapamil. The diagnosis of reversible cerebral vasoconstriction syndrome was made on the basis of clinical and imaging features at a follow-up appointment, independent of the reversibility of verapamil. Receiver operating characteristic curve analysis was performed to determine the best threshold.

RESULTS:

Twenty-six patients were included, and 9 (34.6%) were diagnosed with reversible cerebral vasoconstriction syndrome. A total of 213 vascular segments were assessed on diagnostic angiography. Every patient with a final diagnosis of reversible cerebral vasoconstriction syndrome responded to intra-arterial verapamil. The maximal proportion of change (P < .001), mean proportion of change (P = .002), maximal caliber difference (P = .004), and mean caliber difference (P = .001) were statistically different between patients with reversible cerebral vasoconstriction syndrome and other vasculopathies. A maximal proportion of change ≥32% showed a sensitivity of 100% and a specificity of 88.2% to detect reversible cerebral vasoconstriction syndrome (area under the curve = 0.951). The Reversible Cerebral Vasoconstriction Syndrome-2 score of ≥5 points achieved a lower area under the curve (0.908), with a sensitivity of 77.8% and a specificity of 94.1%.

CONCLUSIONS:

Objective measurement of the change in the arterial calibers after intra-arterial verapamil is accurate in distinguishing reversible cerebral vasoconstriction syndrome from other vasculopathies. A proportion of change ≥32% has the best diagnostic performance.


Password Request

Enter the Username for your user account, then click Submit. We will email you a temporary password.

Find Username

Enter email address for your user account, then click Submit.