ACR–ASNR–SPR PRACTICE GUIDELINE FOR THE PERFORMANCE OF COMPUTED TOMOGRAPHY (CT) PERFUSION IN NEURORADIOLOGIC IMAGING

PREAMBLE

These guidelines are an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology cautions against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, an approach that differs from the guidelines, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. However, a practitioner who employs an approach substantially different from these guidelines is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.

Therefore, it should be recognized that adherence to these guidelines will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.

I. INTRODUCTION

This guideline was revised collaboratively by the American College of Radiology (ACR), the American Society of Neuroradiology (ASNR), and the Society for Pediatric Radiology (SPR).

Computed tomography (CT) perfusion is a technique used in neuroradiology to assess tissue level perfusion and delivery of blood to the brain and/or tissues of the head and neck. The linear relationship between CT numbers or Hounsfield units (HU) and the amount of iodinated contrast material in an image pixel, together with the high spatial and temporal resolution characteristics of the scanning paradigm, make CT perfusion a valuable tool for evaluating blood supply to neoplastic and non-neoplastic tissue (including normal and ischemic tissue). In particular, the evaluation of cerebral ischemia or the angiogenesis state of a tumor is readily performed with CT perfusion imaging. CT perfusion should be performed only for a valid medical reason and with the minimum radiation dose necessary to achieve an optimal study. This standard outlines the principles for obtaining a high-quality CT perfusion study [1,2].
II. INDICATIONS/CONTRAINDICATIONS

A. Indications for CT perfusion in neuroradiology in adults include, but are not limited to:

1. Brain
 a. Primary indications:
 i. Acute neurological change suspicious for stroke [3-9].
 ii. Suspected vasospasm following subarachnoid hemorrhage [10-13].
 iii. Cerebral hemorrhage with secondary local ischemia.
 b. Secondary indications:
 i. Follow-up of acute cerebral ischemia or infarction in the subacute or chronic phase of recovery [14,15].
 ii. To assist in planning and evaluating the effectiveness of therapy for cervical or intracranial arterial occlusive disease (as an isolated test or in combination with a cerebrovascular reserve challenge) [16-18].
 iii. In patients with contraindication to magnetic resonance imaging (MRI) or with devices or material in or close to the field of view that would result in nondiagnostic MRI scans.
 iv. CT perfusion scanning may also be helpful in the setting of acute traumatic brain injury [19,20].
 v. Intracranial tumors [21-24].

2. Head and neck [25]
 a. Primary indications:
 Evaluation of the vascular status of solid tumors where MRI is degraded due to susceptibility artifact from air-containing spaces or from surgical clips or dental work.
 b. Secondary indications:
 Follow-up of tumor response to therapy.

B. Pediatric Indications

At the time of this guideline revision there are no data to support a role of CT brain perfusion imaging in pediatric stroke. It may be reasonable to use CT brain perfusion imaging in individual patients under 18 years of age for the same indications listed for adults, but the increased risk to the pediatric patient associated with radiation exposure obligates the practitioner to apply a higher threshold to any decision to use this technique and to strongly consider MRI as an alternative.

C. Contraindications [26,27]

Prior documented major allergic reaction to iodinated contrast material.

See the ACR–SPR Practice Guideline for the Use of Intravascular Contrast Media and the ACR Manual on Contrast Media.

For the pregnant or potentially pregnant patient, see the ACR Practice Guideline for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation.

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR Practice Guideline for Performing and Interpreting Diagnostic Computed Tomography (CT).

Physicians who supervise, perform, and interpret CT perfusion studies should be licensed medical practitioners who have a thorough understanding of the indications for CT perfusion as well as a familiarity with the basic physical principles and limitations of the CT perfusion technology, including CT imaging, computerized data processing, and the quantitative modeling techniques used to generate the maps of vascular physiologic parameters. The physicians should have a thorough understanding of radiation safety in CT. They should be familiar with alternative and complementary imaging and diagnostic procedures and should be capable of correlating the results of these with CT perfusion studies. Physicians responsible for CT perfusion studies should be able to demonstrate familiarity with the anatomy and especially the physiology and pathophysiology of those organs and anatomic areas that are being examined. These physicians should be able to provide evidence of training and requisite competence needed to perform CT perfusion studies successfully.

A. Physician

Examinations must be performed under the supervision of and interpreted by a physician with the following qualifications:

1. Certification in Radiology or Diagnostic Radiology by the American Board of Radiology (ABR), the American Osteopathic Board of Radiology, the Royal College of Physicians and Surgeons of Canada, or the Collège des Médecins du Québec provided the board examination included CT in neuroradiology.
 or
2. If appropriately certified by the ABR before it examined in CT (1978), the physician can qualify by experience (including at least 2 years during which 500 examinations of the brain, spine, and head and neck were supervised, interpreted, and formally reported) or by completing a mentoring program of 1 year or
less during which the physician interprets 300 examinations under the supervision of an on-site qualified physician (including generating a formal report). If pediatric neuroradiologic CT examinations are to be performed, the physician should have had 3 months of documented formal training in pediatric radiology and should have had documented training and experience in the administration of appropriate sedation and iodinated contrast to pediatric patients.

or

3. The physician must have spent a minimum of 12 months interpreting cross-sectional neuroradiologic imaging examinations with at least 6 months’ training in the interpretation and formal reporting of CT images in a documented formal training program in an institution with accredited residency, fellowship, or equivalent programs in diagnostic radiology and/or neuroradiology.

or

4. In the absence of residency training in diagnostic radiology or radiology, the physician must have had formal fellowship training in neuroradiology, or other postgraduate training that included instruction in neuroradiologic CT, and at least 2 years of experience with CT under the supervision of an on-site qualified physician during which a minimum of 1,000 CT examinations of the brain, spine, and head and neck were supervised, interpreted, and formally reported.

and

5. The physician must have documented training in the physics of diagnostic radiology. Additionally, the physician must be familiar with principles of radiation protection, the hazards of radiation exposure to both patients and radiologic personnel, and appropriate monitoring requirements.

6. The physician should be thoroughly acquainted with the many morphologic and pathophysiologic aspects, variations, and diseases of the central nervous system, spine, and head and neck and the subtle findings for which urgent therapy may be warranted, such as in acute stroke. Additionally, supervising physicians should have appropriate knowledge of alternative imaging methods, including the use of and indications for such specialized studies as angiography, ultrasonography, MRI, and nuclear medicine studies.

7. The physician should be familiar with the appropriate requirements for patient preparation for the examination. He or she must have had training in the recognition and treatment of adverse effects of contrast materials used for these studies. Training and proficiency in cardiopulmonary resuscitation are required when patients undergo contrast-enhanced CT.

8. The physician must be responsible for reviewing all indications for the examination; specifying the use, dosage, and rate of administration of contrast agents; supervising the safe and effective administration of sedative to and monitoring of patients requiring conscious sedation; specifying the scanning technique; interpreting images and constructed physiologic maps; generating written reports; and maintaining the quality of the images, maps, and interpretations.

Maintenance of Competence

Physicians must regularly perform and interpret a sufficient number of CT and CT perfusion studies to maintain their skills and should participate in an ongoing quality-improvement program.

Continuing Medical Education

Continuing education should be in accordance with the ACR Practice Guideline for Continuing Medical Education (CME).

B. Qualified Medical Physicist

A Qualified Medical Physicist is an individual who is competent to practice independently in one or more of the subfields in medical physics. The American College of Radiology considers certification, continuing education, and experience in the appropriate subfield(s) to demonstrate that an individual is competent to practice in one or more of the subfields in medical physics and to be a Qualified Medical Physicist. The ACR strongly recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR), the Canadian College of Physics in Medicine, or the American Board of Medical Physics (ABMP).

The appropriate subfield of medical physics for this guideline is Diagnostic Medical Physics. (Previous medical physics certification categories including Radiological Physics, Diagnostic Radiological Physics and Diagnostic Imaging Physics are also acceptable.)

A Qualified Medical Physicist should meet the ACR Standard for Continuing Medical Education (CME). (ACR Resolution 17, 1996 – revised in 2012, Resolution 42)
The Qualified Medical Physicist should be familiar with the principles of CT imaging physics and of radiation protection; the guidelines of the National Council on Radiation Protection and Measurements; laws and regulations pertaining to the performance of the equipment; the function, clinical uses, and performance specifications of the imaging equipment; and calibration processes and limitations of the instruments used for testing performance. The Qualified Medical Physicist should be knowledgeable in the field of computerized image processing and mathematical modeling of physiological processes.

The Qualified Medical Physicist should have a working understanding of clinical CT perfusion imaging protocols and methods of their optimization, as well as of the implementation and limitations of computer algorithms used to construct maps of vascular physiologic function. The Qualified Medical Physicist should periodically estimate the radiation dose delivered during CT perfusion studies and make sure that it is under the FDA-suggested alert level of 1 Gy CTDI\textsubscript{vol} (or a lower one established by the facility). Protocols exceeding this alert level should be reviewed by a Qualified Medical Physicist, supervising physician, and quality assurance committee. However, any alert level should not be misinterpreted as a cutoff or limit, as there may be good reasons for exceeding it [28].

C. Registered Radiologist Assistant

A registered radiologist assistant is an advanced level radiographer who is certified and registered as a radiologist assistant by the American Registry of Radiologic Technologists (ARRT) after having successfully completed an advanced academic program encompassing an ACR/ASRT (American Society of Radiologic Technologists) radiologist assistant curriculum and a radiologist-directed clinical preceptorship. Under radiologist supervision, the radiologist assistant may perform patient assessment, patient management, and selected examinations as delineated in the Joint Policy Statement of the ACR and the ASRT titled “Radiologist Assistant: Roles and Responsibilities” and as allowed by state law. The radiologist assistant transmits to the supervising radiologists those observations that have a bearing on diagnosis. Performance of diagnostic interpretations remains outside the scope of practice of the radiologist assistant. (ACR Resolution 34, adopted in 2006)

D. Radiologic Technologist

Under the supervision of the physician, the technologist should be responsible for the comfort and safety of the patient; preparing and positioning the patient for the CT perfusion examination; and acquiring, recording, and processing the CT data in a manner appropriate for interpretation by the physician. The technologist should be fully trained to operate CT equipment and be knowledgeable in radiation physics and protection, with documented evidence of such training and experience. The technologist should be certified by the ARRT and, if applicable, have an unrestricted state license in radiological technology.

E. Nurse, if Applicable

Under the supervision of the physician, the nurse, if available, should be responsible for the care of the patient, including screening, preparation, sedation, monitoring of vital signs, support, recovery, discharge, and medical record documentation. The nurse should have documented training or experience in the care of patients undergoing neuroradiologic exams, including airway management, the use of sedative agents and contrast media, the recognition and management of adverse effects, and cardiopulmonary resuscitation. He or she should be certified by the appropriate registry and have an unrestricted state license.

IV. SPECIFICATIONS OF THE EXAMINATION

A. Written Request for the Examination

The written or electronic request for CT perfusion should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state’s scope of practice requirements. (ACR Resolution 35, adopted in 2006)

CT perfusion protocols in neuroradiology require close attention and development by the supervising physician in collaboration with the Qualified Medical Physicist. Protocols should be reviewed and updated periodically in order for the studies to be optimized to match current technology. The supervising physician should be familiar with the indications for each study, patient history, and potential adverse reactions to contrast media. The supervising physician must understand the underlying
physics of CT imaging and how various imaging parameters affect the image quality and the radiation dose. Guidelines should be provided that deal with potential hazards associated with CT imaging of the brain to the patient as well as others in the immediate area. The supervising physician should understand the limitations of the data analysis technique used and of the physiological model applied algorithmically to the data.

Intravenous (IV) contrast injection should be performed using injection protocols that are in accordance with the institution’s policy on IV contrast use. The responsible physician should be able to treat adverse reactions arising from administration of contrast. The supervising physician should be familiar with the effects of contrast injection rate, contrast volume, and concentration on the quality of the temporal enhancement curves and constructed physiologic maps.

B. Patient Selection and Preparation

The physician responsible for a CT perfusion study should supervise patient selection and preparation. Patients should be screened for any history of contrast reactions prior to the examination to exclude individuals who may be at risk. In an acute situation a supervising physician decides about the performance of a CT perfusion study based on a risk/benefit analysis and may choose to waive the need for laboratory evaluation of the renal function prior to the CT perfusion study in patients [26,29].

A patient is prepared for a CT perfusion study by inserting a cannula into a vein at or above the antecubital region prior to the patient’s entry into the scanner. An 18-gauge or 20-gauge cannula is required (18-gauge preferred). Contrast can also be injected through an existing IV access provided it has the required caliber and specifications. In children, depending on their age and size, a smaller cannula may be necessary. The patient should lie on the scanner table in supine position with his or her head in a head holder. If needed, the head can be immobilized using forehead and chin straps. A contrast infusion pump should be connected to the cannula. The head is centered to the scanner isocenter.

C. Examination Techniques

There are two CT perfusion approaches that use different data acquisition and analysis methods. These methods differ in their volume coverage (i.e., the amount of tissue that can be imaged during one data acquisition or one imaged series), the amount of contrast agent injected, the injection rate, the data acquisition mode used to acquire the data (helical or cine), and the temporal resolution of data acquisition [30,31].

Protocols vary with the manufacturer and model of the scanner used. Although protocols continue to evolve, current expert consensus is available [32]. Scanner-specific examination protocols are also available from the American Association of Physicists in Medicine at http://www.aapm.org/pubs/CTProtocols/default.asp [33].

Injection of contrast should be performed using a power injector and adhering to the institution’s policies on contrast utilization. An appropriately qualified person should monitor contrast administration in the scanner room, adhering to appropriate radiation protection measures per the institution’s guidelines. Dual bore, saline chase injection pumps are preferable to optimize the use of contrast material. A saline chase of at least 15 to 20 cc is recommended [29,34].

Given the significant radiation dosage with this examination it should only be repeated after physician review. Alternative modalities should be considered if repeat CT perfusion examinations are indicated.

1. First pass or dynamic CT perfusion [4-6,35-42]

A first pass or dynamic CT perfusion study is performed by acquiring repeated images at the same location through a volume of interest during bolus injection and passage of contrast through the region of interest. The total volume and injection rate of contrast material should be optimized for each pathophysiologic situation being investigated, with a minimum volume of 40 ml and a minimum injection rate of 4 ml/second. The higher the injection rate the better the peak opacification and the better the image and temporal curve quality, which in turn determines the quality of the constructed physiologic maps. Of note, in children, smaller injection rates and smaller volumes of contrast should be used [43]. The relationship between the start of imaging and start of contrast injection should be such that at least 2 baseline images are obtained prior to arrival of contrast into the tissue of interest. Normally, starting the imaging 5 seconds (or less) after the onset of injection will suffice to achieve this goal.

First-pass or dynamic CT perfusion can be performed using cine mode, a combination of cine and axial modes, or a toggling table technique [44]. In all cases, imaging should cover the whole first passage of contrast through the tissue under investigation, without truncating the end of the washout of the contrast bolus. This is of particular concern in patients with impaired cardiac output. Also, frequency of image acquisition should be matched to the tissue
physiology and be such that an arterial input curve as well as tissue enhancement curves can be constructed.

In a pure cine mode, the temporal resolution of the CT acquisition should be 1 image per second, and the acquisition should span a total of at least 50 to 60 seconds.

When a combination of cine and axial modes is used, the cine acquisition should come first, have a temporal resolution 1 image per second, and span approximately 35 to 37 seconds. This should be followed by the axial acquisition, with a temporal resolution of 1 image per 3 seconds, and for a total duration of another 33 to 35 seconds.

In the toggling table technique, the CT table moves back and forth between two table locations during the injection of contrast and the acquisition of images. The temporal resolution at each location should be no less than 1 image per 3 seconds. The acquisition should span a total of at least 50 to 60 seconds [44,45].

A multislice cine scan is preferable, although a single slice scan can be useful in some circumstances. The maximum width of the imaged volume is determined by the CT scanner’s detector array width in multi-detector-row scanners, and by the collimated image thickness in single-detector-row scanners.

IV contrast injection should be performed in accordance with the institution’s policy on IV contrast use. Higher injection rates will increase the quality of a first pass cine CT perfusion study by increasing the transient contrast agent concentration and thus the signal-to-noise ratio of the time contrast curves used to construct the physiologic maps. For further information see the ACR–SPR Practice Guideline for the Use of Intravascular Contrast Media.

CT perfusion study, if performed in conjunction with a CT angiogram of the intracranial and/or cervical vessels, can be performed before, after, or concurrent with the CT angiogram.

Technique parameters affecting the radiation dose (kVp, mAs and beam collimation) should be optimized for each scanner type so that diagnostic quality images and maps are produced at minimum radiation dose. Parameters of 80 kVp and 100 to 200 mAs are strongly recommended, as they allow the radiation dose associated with CT perfusion to be maintained as low as reasonably achievable.

Images should be viewed electronically using cine display in order to demonstrate possible patient or organ movement. If movement is observed, the effects of motion on the constructed maps should be considered. The physiological maps should be interpreted with the knowledge of all clinical data and the findings of anatomical imaging. Images are better viewed on a dedicated computer display rather than from film or paper copy, as this permits interactive adjustment of brightness, contrast, and color scale. If maps of blood volume, blood flow mean transit time, and tissue permeability are produced, they should be interpreted as a coherent set of data; none of the maps should be interpreted in isolation without knowledge of other types of maps available for review [4-6].

The responsible physician should understand the limitations of various CT perfusion imaging methodologies and the limitations of mathematical models used to construct the physiologic maps. The responsible physician should decide which of the various CT perfusion methodologies to use for a particular pathology or organ part. This decision should be based on clinical information, expected physiological behavior of underlying pathology, and contrast pharmacokinetic behavior [46,47].

2. Whole brain CT perfused blood volume [48-50]

Whole brain CT perfused blood volume is assessed by acquiring a helical scan through the whole brain with and without contrast.

A noncontrast CT scan is first acquired through a prescribed volume of interest and reconstructed into 3 to 5 mm contiguous or overlapping images. Reconstructed image thickness should not exceed 5 mm.

Acquiring a helical data set through the whole brain after injection of a nonionic contrast agent constitutes a contrast scan. The total volume of contrast material injected is typically between 90 and 150 ml depending on the volume imaged and the speed of data acquisition. Injection rates of 3 to 3.5 ml/second are typical producing a 25- to 40 second long bolus. Delay time between onset of injection and image data acquisition should be long enough to assure that all perfused arteries, capillaries, and veins are filled with contrast material during the time of helical scanning. A
20- to 25 second delay is long enough for most patients. Of note, in children, smaller injection rates and smaller volumes of contrast should be used according to the ACR Manual on Contrast Media [43]. The contrast data should be scanned and reconstructed in images with a thickness matching that of the noncontrast CT scan.

Technique parameters affecting the radiation dose (kVp, mA, and beam collimation) should be optimized for each scanner type so that diagnostic quality images are produced with a minimum radiation dose.

Interpretation is best done using soft copy reading, interactively varying the window and level settings. Noncontrast and contrast scans should be interpreted together.

Of note, some large coverage scanners now offer whole-brain 4D CT angiography/CT perfusion in a combined single study with only one injection of contrast medium [51].

V. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Guideline for Communication of Diagnostic Imaging Findings.

The amount of contrast injected and the injection rate used should be included.

Observation of any visible movement during a cine scan should be included in the report, and its impact on the calculated maps should be considered when interpreting them. Specifically, for dynamic and first pass cine imaging it is essential that the arterial and venous curves used for calculating the perfusion maps be archived together with the temporal images and physiologic maps. This serves as a quality control parameter for any particular CT perfusion scan.

VI. EQUIPMENT SPECIFICATIONS

A. CT Scanner

For patient imaging, the CT scanner should meet or exceed the following specifications:
1. Tube rotation time should not exceed 1 second.
2. Helical and cine imaging should be available. Continuous cine imaging should be possible for a minimum of 50 to 60 seconds. “Toggle table” or “shuttle mode” technique is optional.
3. A multi-detector row CT scanner with cine scanning capability is preferable.
4. A power injector for contrast administration must be used; a dual bore injection pump is preferable.

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Computed Tomography (CT) Equipment.

B. Patient Monitoring Equipment

Appropriate emergency equipment and medications must be immediately available to treat adverse reactions associated with administered medications. The equipment and medications should be monitored for inventory and drug expiration dates on a regular basis. The equipment, medications, and other emergency support must also be appropriate for the range of ages or sizes in the patient populations.

C. Image Processing Workstation and Software

An image processing workstation with appropriate software is necessary for producing physiologic maps from both first pass and/or dynamic CT perfusion data. The software should allow reasonable motion correction. Automated and semiautomated selection of the arterial input function and partial volume reference is preferred [46,47,52].

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, radiologic technologists, and all supervising physicians have a responsibility to minimize radiation dose to individual patients, to staff, and to society as a whole, while maintaining the necessary diagnostic image quality. This concept is known as “as low as reasonably achievable (ALARA).”

Facilities, in consultation with the medical physicist, should have in place and should adhere to policies and procedures, in accordance with ALARA, to vary examination protocols to take into account patient body habitus, such as height and/or weight, body mass index or lateral width. The dose reduction devices that are available on imaging equipment should be active; if not; manual techniques should be used to moderate the exposure while maintaining the necessary diagnostic image quality. Periodically, radiation exposures should be measured and patient radiation doses estimated by a medical physicist in accordance with the appropriate ACR Technical Standard. (ACR Resolution 17, adopted in 2006 – revised in 2009, Resolution 11) [53]

The FDA recommends that each facility set its own alert level for brain perfusion studies beyond which further
review by a Qualified Medical Physicist, supervising physician, and quality assurance committee may be necessary. Based on FDA’s review of the literature, a reasonable alert level could be set at 1 Gy CTDI$_{vol}$. Any alert level should not be misinterpreted as a cutoff or limit, as there may be good reasons for exceeding it [28].

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR web site (http://www.acr.org/guidelines).

For specific issues regarding CT quality control, see the ACR Practice Guideline for Performing and Interpreting Diagnostic Computed Tomography (CT).

The supervising physician should review all practices and policies at least annually. Policies with respect to contrast and sedation must be administered in accordance with institutional policy as well as state and federal regulations. A physician should be available on-site whenever contrast or sedation is administered.

Equipment monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Computed Tomography (CT) Equipment.

ACKNOWLEDGEMENTS

This guideline was revised according to the process described under the heading The Process for Developing ACR Practice Guidelines and Technical Standards on the ACR web site (http://www.acr.org/guidelines) by the Guidelines and Standards Committees of the Commissions on Neuroradiology and Pediatric Radiology in collaboration with ASNR and the SPR.

Collaborative Committee – members represent their societies in the initial and final revision of this guideline

ACR
Max Wintermark, MD, Chair
Ellen G. Hoeffner, MD
Todd S. Miller, MD
Sumit Pruthi, MD

ASNR
Pamela W. Schaefer, MD
Michael H. Lev, MD

SPR
Blaise V. Jones, MD
James L. Leach, MD
Nadja Kadom, MD

ACR Guidelines and Standards Committee – Neuroradiology – ACR Committee responsible for sponsoring the draft through the process.
Jacqueline A. Bello, MD, FACR, Chair
John E. Jordan, MD, Vice-Chair
Mark H. Depper, MD
Allan J. Fox, MD, FACR
Steven W. Hetts, MD
Ellen G. Hoeffner, MD
Thierry A.G.M. Huismans, MD
Stephen A. Kieffer, MD, FACR
Srinivasan Mukundan, MD, PhD
Eric M. Spickler, MD, FACR
Ashok Srinivasan, MD
Kurt E. Tech, MD, MMM, FACR
Max Wintermark, MD
Carolyn C. Meltzer, MD, FACR, Chair, Commission

ACR Guidelines and Standards Committee – Pediatric – ACR Committee responsible for sponsoring the draft through the process.
Marta Hernanz-Schulman, MD, FACR, Chair
Sara J. Abramson, MD, FACR
Brian D. Coley, MD
Kristin L. Crisci, MD
Eric N. Faerber, MD, FACR
Kate A. Feinstein, MD, FACR
Lynn A. Fordham, MD
S. Bruce Greenberg, MD
J. Herman Kan, MD
Beverley Newman, MD, MB, BCh, BSc, FACR
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Manrita K. Sidhu, MD
Donald Frush, MD, FACR, Chair, Commission

Comments Reconciliation Committee
Jacqueline A. Bello, MD, FACR, Co-Chair
Alexander M. Norbash, MD, FACR, Co-Chair
Kimberly E. Applegate, MD, MS, FACR
Richard K. Downs, MD
Howard B. Fleishon, MD, MMM, FACR
Donald P. Frush, MD, FACR
Richard A. Geise, PhD, FACR
Marta Hernanz-Schulman, MD, FACR
Ellen G. Hoeffner, MD
Blaise V. Jones, MD
John E. Jordan, MD
Nadja Kadom, MD
Paul A. Larson, MD, FACR
James L. Leach, MD
Michael H. Lev, MD
Carolyn C. Meltzer, MD, FACR
REFERENCES

25. Mukherji SK, Casteljins JA. CT perfusion of head and neck cancer: why we should care versus why we should not! *AJNR* 2010;31:391-393.

*Guidelines and standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For guidelines and standards published before 1999, the effective date was January 1 following the year in which the guideline or standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Guideline

2007 (Resolution 2)
Amended 2009 (Resolution 11)
Revised 2012 (Resolution 13)